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Section 1

Theory
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Background & Motivation

Within the MCNP code, particles are tracked using “surface-to-surface” tracking:
I Break geometry into regions with constant materials.
I Sample distance to collision � c, compute distance to surface, � s

I If � c > � s, move to surface
I Else, move to collision and sample collision

Implementation is easy, as constant materials means constant collision probability
(� t ), and the distance sampling is analytic:

� c =
� ln( � )

� t

Similarly, constant materials means tallies have a constant multiplier over each
track, and one can use track-length tallies (which are used extensively within the
MCNP code).
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Toy Problem

Let us consider a toy problem for demonstrating algorithms.
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Surface Tracking

Event: any iteration of the transport loop (here, collision or surface crossing),
requiring data lookups and resampling.
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TRISO Problems

I TRISO fuel is very small
I A full reactor can have well in

excess of 5 billion surfaces
I Every crossing requires many

computations
I This results in poor performance

TRISO Fuel Element
(cylinder is 1.5 cm across)
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Alternatives

I Numerical Methods
I Can handle continuously varying materials well
I Discontinuities require either stopping the particle or taking many steps

near the discontinuity

I Delta Tracking
I Focus of this talk
I Can handle discontinuous materials
I Used in the Serpent Monte Carlo code
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The Delta Tracking Method

1. Add to the collision probability � t a probability of not colliding � nc.

2. Select � nc such that � t + � nc is constant and � nc is non-negative.
� t + � nc is now called the “Majorant”, � m .

3. Track with this new cross section. Distance is now:

� c =
� ln(� 1)

� m

4. Move particle � c.

5. Randomly sample if a collision was real or not:
5.1 If � 2 < � t

� m
; collide

5.2 Else, leave particle as-is.
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Delta Tracking

Using delta tracking, one notes that every part of the geometry is tallied in the �rst
event, and fewer events are needed to make it through on average.
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Advantages and Disadvantages to Delta Tracking

Advantages:
I Adding more surfaces does not affect performance (aside from possibly

increasing cell-at-point-of-collision lookup time)

Disadvantages:
I A large majorant will cause more collisions, harming performance

I Burnable absorbers are key culprit
I Cannot use track-length tally estimators for most values of interest

without issue
I Exception is �ux tallies in a structured mesh, where distance in cell is

easy to compute and there is no discontinuous weighting function
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Large Majorant Example

If the majorant is increased (say, due to burnable absorbers), events occur more
often, reducing ef�ciency.
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Tallies

As mentioned earlier, delta tracking does not support track-length estimators in
most con�gurations:
I For cell tallies, would need to determine if each track entered a cell and

for how long
I For reaction rate tallies, would need the same for materials

Computing this information would nullify the delta tracking advantage. So, instead,
at every event, we tally:

score =
weight � multiplier at event

� m

(Pseudo-)collision tallies tend to have a larger variance than track-length tallies,
particularly as tally domain size shrinks.
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Tally Comparisons

As the tallies get �ner, track-length tallies statistically outperform collision tallies.
Ratios are exaggerated by being 1D.
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Figure of Merit

While the variance of the tallies may be higher, if the simulation runs faster, you can
run more particles to make up for it.

variance /
1

number of simulated particles
/

1
time

Based on the above relationship, (variance � time) should be roughly constant for
any given algorithm. So, the �gure of merit for Monte Carlo, FOM is given by:

FOM =
1

� 2t

The ratio of the FOM between algorithms shows, roughly, how much more ef�cient
one algorithm is compared to another.
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Section 2

MCNP Implementation
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Computing the Majorant

There are several ways one can compute the majorant:

1. Get the global maximum � t

2. Create a function such that � m (E) � � t (E) for all positions

This latter form is made possible by the fact that neutrons and photons do not
change energy except during collision (in the physics implemented in MCNP).

Making it a function of energy is bene�cial. As shown earlier, a large majorant
reduces ef�ciency. This form will reduce � m over most energies.
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Data Components

For each particle, the majorant must take into consideration all contributions. In the
MCNP code, these are:
I Neutrons

I Basic reaction rates - linear-linear representation
I Unresolved resonances - several possible representations
I S(�; � ) - two components are linear-linear, one is piecewise functions

proportional to 1=E
I Photons

I Photoatomic - log-log representation
I Photonuclear - linear-linear representation

� m (E ) was chosen to be linear-linear interpolated, as it makes several datasets
trivial and the rest can be quickly approximated as linear-linear.
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Majorant

The majorant is then computed during simulation load:
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Transport Modi�cations

I A hybrid approach was used:
I If in a “delta-tracking universe”,

use the delta tracking code path
I If not, use the regular

surface-to-surface code path

I This allows one to get performance
bene�ts inside of a core, while still
allowing surface tallies in the
perimeter.
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Gaps in Implementation

The MCNP code has decades of features implemented assuming
surface-to-surface tracking. To support everything in the �rst pass would be folly.

The following are known to not work with delta tracking at this time:
I Most variance reduction - many need rederiving/reconsidering
I Unstructured/structured mesh geometry - uses a completely different

code path
I All non-neutron/photon particles - most of the bene�ts are invalid for

charged particles, for example

Other particles are still allowed, they just ignore the delta tracking �ag.
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Section 3

Testing
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Testing

With such a radical change in the transport algorithm, care needed to be taken to
ensure things did not break.

Generated two k-eigenvalue test problems:

1. A 2D PWR

2. A simpli�ed TRISO reactor

Con�guration:
I Each run 50 times, with and without delta tracking
I Neutrons, photons, and photonuclear physics was enabled
I Cell tallies performed in several cells
I FMESH energy deposition tallies performed over whole core
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2D PWR

I 1,000,000 particles per generation
I 100 inactive generations
I 200 active generations
I ENDF/B-VIII.0 data
I 15� 15FMESH tallies
I Tallies in fuel, clad, water

PWR Layout
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2D PWR Tallies

Value � , in std-dev FOM Ratio

k-eigenvalue 0.50 1.65
Neutron � a, fuel 0.45 1.34
Neutron � a, clad 1.22 0.70

Neutron � a, water 0.04 1.28
Photon � t , fuel 0.74 1.54
Photon � t , clad 0.94 1.14

Photon � t , water 1.37 1.67

In all cases, the difference in units of standard deviations does not indicate any
issues with the implementation. Further, the maximum relative error between the
two transport modes was 5:4 � 10� 5, putting a tight bound on any error hidden by
statistics.

Performance wise, the �gure of merit increased a moderate amount for most tallies.
The cladding, being quite thin, falls afoul of the increased variance for small regions
issue.
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2D PWR FMESH Accuracy

Difference between tallies, in units of standard deviations

(a) Neutrons (b) Photons

Both FMESH tally results show no unexpected discrepancies.
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2D PWR FMESH FOM

Ratio of �gure of merit, delta over surface-to-surface

(c) Neutrons (d) Photons

Delta tracking improved performance moderately, but it was spatially non-uniform.
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TRISO Model

I 100,000 particles per generation
I 100 inactive generations
I 200 active generations
I ENDF/B-VIII.0 data
I 22� 22FMESH tallies
I Tallies in fuel, TRISO layers

TRISO Reactor Layout
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TRISO Model Tallies

Value � , in std-dev FOM Ratio

k-eigenvalue 0.41 13.49
Neutron � a, fuel 1.42 13.39

Neutron � a, layer 1 0.71 3.77
Neutron � a, layer 2 0.86 0.86
Neutron � a, layer 3 0.03 4.58
Neutron � a, layer 4 0.13 1.63

Photon � t , fuel 0.30 19.78
Photon � t , layer 1 0.80 18.78
Photon � t , layer 2 1.03 8.55
Photon � t , layer 3 0.25 8.75
Photon � t , layer 4 0.58 8.73

No indication of errors in the implementation. The maximum relative error was
4:8 � 10� 4. FOM improvements are much larger than the PWR results for most of
the geometry.
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TRISO FMESH Accuracy

Difference between tallies, in units of standard deviations

(e) Neutrons (f) Photons

Still no indication of abnormal behavior.
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TRISO FMESH FOM

Ratio of �gure of merit, delta over surface-to-surface

(g) Neutrons (h) Photons

Performance improvements are more uniform and of larger magnitude than the
PWR simulation.
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Summary

I Small improvements in regular geometries like a PWR
I Large performance improvements in �ne geometries like TRISO reactors
I Testing showed no indication of implementation error in any test

performed
I Further testing and cross-feature checking will be done for a future

production release of the MCNP code.
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